COMPARATIVE IMMUNOGENICITY OF TYPHOID Vi CONJUGATE VACCINE AND TYPHOID POLYSACCHARIDE VACCINE IN MICE

Sashmita Sahani¹, Rachna Singh², *Manoj K. Sharma³,
Bio-Med (P) Ltd., C-96, Bulandshahr Road Industrial Area, Ghaziabad -201009 (UP)
*Corresponding Author: bmvaccine@yahoo.com

ABSTRACT
Typhoid fever is a generalized acute systemic infection caused by Salmonella typhi. The Vi-polysaccharide vaccine is said to have some limitations – the immune response is a T cell independent phenomenon and the antibody response is not boosted by additional doses. Comparative immunogenicity study in mice was done in Typhoid Vi Conjugate Vaccine (Bio-Med (P) Ltd.), Typhoid Polysaccharide Vaccine (Bio-Med (P) Ltd.) and Typhoid Vi conjugate vaccine (Bharat Biotech International Ltd.). A randomized controlled study was conducted on Swiss albino mice weighing 17-22 gram. Mice were injected with primary (1st) dose and booster dose after 14 days by subcutaneous route. Control group was inoculated with normal saline. Peda Typh™ induced significantly higher anti Vi IgG serum antibodies than Bio Typh™ and Typhbar TCV® in all dose variations and number of vaccination schedules carried out in the study.

Keywords: Typhoid Vi conjugate vaccine, typhoid polysaccharide vaccine, Vi polysaccharide –tetanus toxoid vaccine, typhoid vaccine.

INTRODUCTION
In developing countries, typhoid fever is very common and increasingly difficult disease to treat because of the increasing level of antibiotic resistance against Salmonella typhi (Lin et al., 2001). It remains a serious disease with a disease burden in major population living in South America, African continent, South-East Asian countries. Despite the availability of several antimicrobial agents for its treatment; the emergence of antibiotic resistant strains has posed a significant challenge in the treatment of typhoid and so it still continues to remain an important cause of morbidity. Therefore strategies to prevent the disease would include effective sewage treatment, safe potable drinking water and vaccination against the disease (Acharya et al., 1987; Klungman et al., 1987).

The vaccines for typhoid currently available in India are injectable Vi polysaccharide vaccine and Vi-TT conjugate polysaccharide vaccine (Klungman et al., 1996). The Vi-polysaccharide vaccine is said to have some limitations – the immune response is a T cell independent phenomenon and the antibody response is not boosted by
additional doses (Kossaczka et al., 1999; Singh et al., 1999). In order to improve the efficacy of the Vi-polysaccharide vaccine and to protect the susceptible infants and under five years old children, a new technology for conjugation with a suitable protein was developed (Szu, 2013; Szu et al., 2013). Clinical studies of tetanus toxoid conjugated Vi polysaccharide typhoid vaccine in infants and young children shows that the efficacy of conjugated typhoid vaccine have high titre compared to typhoid polysaccharide vaccine (Garg et al., 2014; Vadrevu et al., 2015).

The objective of this study was to compare the immune response induced by different typhoid conjugate vaccines in mice. No comparative immunogenicity study between two different conjugate vaccines was done previously in human or animal test models. Mice models are indispensible tools for accessing candidate vaccine with pre-clinical, safety and immunogenicity.

**MATERIAL AND METHOD**

**Study Design**

6 groups of 10 mice (Swiss albino) each of 17-22 gram were inoculated with different vaccines, in different concentration and control group with normal saline (0.9% w/v sodium chloride injection IP) as detailed in Table 1.

**Vaccine**

First dose of vaccine was given on day 0 and second dose on day 14 by subcutaneous route using 0.1 ml per dose. Blood was collected on day 14 and day 21, the individual serum samples of mice were separated and tested for anti Vi IgG antibodies by ELISA (Szu et al., 2013).

**Table 1: Details of vaccination and blood collection schedule of mice.**

<table>
<thead>
<tr>
<th>Details</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Group E</th>
<th>Group F</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Mice</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Typbar-TCV&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Typbar-TCV&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Bio Typh&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Peda Typh&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Peda Typh&lt;sup&gt;TM&lt;/sup&gt;</td>
<td>Normal saline</td>
</tr>
<tr>
<td>Dose</td>
<td>0.1µg/0.1 ml</td>
<td>0.5µg/0.1 ml</td>
<td>0.1µg/0.1 ml</td>
<td>0.1µg/0.1 ml</td>
<td>0.5µg/0.1 ml</td>
<td>0.1ml</td>
</tr>
<tr>
<td>Route</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
</tr>
<tr>
<td>Day of Vaccination</td>
<td>0 &amp; 14</td>
</tr>
<tr>
<td>Day of Blood Collection</td>
<td>14 &amp; 21</td>
</tr>
</tbody>
</table>

**Safety**

Mice were monitored on weekly basis to observe the side effects of vaccination. Mice in all groups remained healthy with gradual increase in body weight.

**Immunogenicity Assay**

To evaluate the level of vaccine induced IgG anti-Vi antibody level, blood from mice of each group was collected on 14<sup>th</sup> day and 21<sup>st</sup> day (i.e. after 7 days of booster dose) to prepare serum samples. Serum IgG anti-Vi antibodies were assayed by Enzyme linked immunosorbent (ELISA) (Szu et al., 2013) and expressed in ELISA units relative to a positive control with standard arbitrary assigned a value of 100 ELISA units. For the study on mice a clearance was taken from the IAEC vide approval no 022/BM/R&D/2018.
ELISA

Coating antigen was prepared by Vi polysaccharide covalently conjugated to bovine serum albumin via adipic acid dihydrazide linker (Vi-ADH-BSA) having concentration 1725 µg of Vi polysaccharide/ml. Lot No. Vi-ADH-BSA/01. Positive control serum was prepared by pooling sera of mice vaccinated with Typhoid Vi conjugate vaccine (Peda Typh™), (3 doses of 1µg/0.1ml concentration, injected in group of 10 mice by subcutaneous route at interval of 14 days, blood collected 7 days after the last dose) Positive control serum is assigned an arbitrary value of 100 ELISA units.

Vi polysaccharide covalently conjugated to bovine serum albumin (coating antigen) was prepared in phosphate buffered saline (pH 7.4). The optimum coating concentration of antigen was determined using checkerboard titration method, concentration of 10µg/ml was found suitable. Coating antigen was dispensed in an ELISA plate (Nunc Maxisorp™). Wells were blocked by blocking solution for overnight at 2-8°C. After blocking, dilutions of test serum were prepared (1:100), negative control (1:100) and standard reference for Vi polysaccharide IgG antibodies (1:100, 1:200, 1:400, 1:800, 1:1600, 1:3200) in PBS-T with 1% BSA. 200µl of each dilution was dispensed in ELISA plate and incubated for 2 hours at room temperature in humidified box. Anti mouse IgG-HRP conjugate (1:25000) was diluted in PBS-T with 1% BSA, dispensed and incubated at room temperature in humidified chamber box for 2 hours. Horse reddish peroxidase (substrate) was dispensed and incubated at room temperature. Reaction was stopped by the addition of 1N H₂SO₄. Optical density was measured in ELISA reader at 490 nm. Pooled serum of control group inoculated with normal saline was set as blank.

Statistical Analysis

ELISA units were calculated with the program of ELISA for windows version 2.00 of the Center for Disease Control, U.S. Department of Health and Human Services, National Center for Infectious Diseases, Division of Bacterial and Mycotic Diseases, Atlanta, USA. This module uses a four-parameter logistic-log function to describe standards data and form calibration curves.

RESULTS AND DISCUSSION

Results are shown in Table 2.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>GROUPS</th>
<th>ELISA unit on 14th day</th>
<th>ELISA unit on 21st day after booster dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group A (0.1µg/0.1ml Typbar TCV)</td>
<td>3.917</td>
<td>17.440</td>
</tr>
<tr>
<td>2</td>
<td>Group B (0.5µg/0.1ml Typbar TCV)</td>
<td>15.976</td>
<td>20.282</td>
</tr>
<tr>
<td>3</td>
<td>Group C (0.1 µg/0.1ml Bio Typh )</td>
<td>3.343</td>
<td>5.360</td>
</tr>
<tr>
<td>4</td>
<td>Group D (0.1µg/0.1ml Peda Typh)</td>
<td>10.553</td>
<td>82.798</td>
</tr>
<tr>
<td>5</td>
<td>Group E (0.5µg/0.1ml Peda Typh)</td>
<td>31.190</td>
<td>51.362</td>
</tr>
</tbody>
</table>
CONCLUSION

Peda Typh™ induced significantly higher anti Vi IgG antibodies than Bio Typh™ and Typbar TCV® in all dose variations and number of vaccination schedules. It can be seen from the results that unconjugated Vi polysaccharide vaccine (Bio Typh™) induced lower immune response and booster response as compared with conjugated Vi polysaccharide vaccines (both Peda Typh™ & Typbar-TCV™). Peda Typh immune response with 0.1 µg dose was higher than immune response of Typbar-TCV at 0.1 µg and 0.5 µg. This points to superior antigenic response of Peda Typh over Typbar in mice model. Further, the results significantly show that the immune response to Peda typh™ after one booster dose induced much higher immune response than Typbar-TCV™.

Comparative immunogenicity study using Typbar –TCV™ and Peda Typh™ may be conducted in human volunteers to see if similar correlates to mice immunogenicity study are observed.

REFERENCES


